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Abstract
In the growth and formation of nanoscaled structures on Pb/Si(111) and Pb/Cu(111), certain
heights of the structures have increased stability, which leads to the formation of tower-like
structures (nanotowers). Typically, such Pb nanotowers with even numbers of layers up to 8 are
found to be stable, as well as towers with odd numbers of layers from 11 onwards. The stability
of these preferred heights is due to the electronic structure dependent total energy, the so-called
quantum size effect (QSE). We present here a simple phenomenological model describing the
QSE on nanostructure growth. The basic model is a modification of the simultaneous multilayer
growth model, relating the mass redistribution between different layers to Friedel-type surface
energetics in order to capture the QSE. In the model, the structures consisting of even numbers
of layers (4, 6, 8) and odd numbers of layers (11 and 13 onwards) are stable, and are shown to
have tower-like morphology.

1. Introduction

In quantum dot (QD) growth there are interesting situations
where the height selection of certain stable QDs occurs
during their growth [1–3]. An extensively studied case
is the formation of Pb nanotowers on Si(111) [2–7] or
Cu(111) [8–11]. In Si(111) and Cu(111) the Pb nanotowers
tend to grow in bilayer growth mode, in which two layers
will form simultaneously until the stable heights—typically
6, 8, 10, 11 and 15 (the stability of heights 4, 10 and
13 are somewhat unclear)—are reached. Towers consisting
of 5, 9, 12, 14 layers are unstable [2–11]. The origins
of the height selection, stability and simultaneous bilayer
growth are well understood in terms of confined electronic
states in QDs, and the effect of confinement on the total
energy of a system can be quite accurately described in terms
of the Friedel-oscillations [4, 5, 9, 10, 13, 12]. In Pb/Si
and Pb/Cu systems, the differences in total energies of the
alternating layers, as inferred from experiments and ab initio
calculations [3, 5, 6, 10–12], are expected to be only of order
25–50 meV per surface atom.

The knowledge about the effect of electronic structure on
energetics and stability forms only the first step towards un-
derstanding the growth and formation of height-selected QDs.

The growth and decay of nanostructures is often modelled by
the so-called step models, where surfaces are treated as step-
like geometric structures on which the adatoms move. The
step models have been quite successful in explaining the ba-
sic features of nanostructure growth and morphological trans-
formations [14–18]. However, it is interesting to try to un-
derstand the basic aspects of such phenomena in less compli-
cated terms by relating the evolution of nanostructures more
directly to macroscopic mass currents and their dependence on
the structure morphology.

In this work, we present a simple phenomenological
model, which describes the QSE on nanotower growth through
the Friedel model and reproduces the experimentally observed
height selection in Pb/Si and Pb/Cu systems. The model is a
modification of the so-called ‘wedding-cake’ models, which
treat the surfaces as a stack of concentric layers, focusing
on the changes of the total coverages of the layers during
the growth [19–23]. The mass redistribution is described
in terms of macroscopic mass currents, which depend on
film morphology as well as the energetic stability as given
by the Friedel model. Therefore, the energetic stability is
not a prediction of the model, but rather a built-in feature
which defines how the morphology becomes affected by
the energetics. Such a model can capture the minimal
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set of assumptions needed to understand the interrelation
between morphological evolution of nanostructures and the
mass redistribution guided by energetics. Because of the
simplicity of our model, its results are only qualitative, but they
suggest that the underlying processes needed to reproduce the
basic generic features of height selection caused by the QSE
are quite simple.

2. The phenomenological model

In small systems, the quantum mechanical effects of electron
confinement cause clear size dependent variations in the
total surface energy, and this so-called quantum size effect
(QSE) favours the stability of certain sizes and heights of the
structure [2–6, 9, 10, 12]. The energetics originating from the
QSE can be modelled with Friedel-type surface energy

En = A
cos[2kFd(n + �n)]

(n + �n)α
+ B, (1)

which oscillates as a function of the structure height n. The
parameters of the Friedel model depend slightly on the method
used, or how they are inferred from the experiments. In what
follows, we use kF = 15.9 nm−1 for the free electron Fermi
wavevector, d = 0.284 nm for the thickness of a single Pb
layer, and α = 0.938 to describe the decay of the oscillations
with increasing height. The additional parameter �n = 0.30
takes into account the fact that the quantum well may be
slightly deeper than nd due to the charge spillage effect [5].
The values of these parameters are chosen to agree with the
ones given in [5], but also different parametrizations yielding
basically similar results are possible [6]. The parameters A and
B define the absolute energy scale. In the following B = 0 and
A ≈ 150 meV for Pb/Si and 300 meV for Pb/Cu systems are
used, so that the minimum energy barrier occurring at n = 7
is �E7 ≈ 20 meV for Si (cf [5]) and 40 meV for Cu. The
temperatures of interest are T = 150–250 K and T = 250–
450 K, for Si and Cu systems, respectively. For convenience
we use scaled dimensionless energies En → En/A and
temperatures T → kBT/A, with values A = 150 meV for
Si and 300 meV for Cu.

2.1. The rate equations of growth

The phenomenological model to be constructed here is
a ‘wedding-cake’ model, where the growing nanostructure
consists of concentric layers with coverages θn, n =
1, . . . , Ntop, and where the coverages are scaled with the
bottom layer area θ0 [20]. Following the diffusion corrected
simultaneous multilayer (DSCM) growth model proposed by
Fu and Wagner [22], we make a simplifying assumption that
the evolution of the morphology can be described in terms of
mass currents Jn feeding the growth, and in terms of interlayer
mass transfer rates γn governing the mass redistribution
between the adjacent atomic layers. The feeding current Jn

(see section 2.3) comes from the wetting layer of adatoms,
which is pre-deposited up to total coverage �, and it enters the
layers at height n. Therefore, Jn necessarily depends on the

height i.e. on the number of layers n of the structure (compare
e.g. with [2, 3]).

The rate equations describing the time evolution of
coverage θn of a given layer n are obtained by considering
the effective mass currents affecting the growth. The adatom
flux on terrace n is simply given by two terms: the adatom
flux Jn(θn−1 − θn) from the wetting layer on the terrace, and
the redistribution current from upper layers. The redistribution
current, on the other hand, is given by the product of three
factors: (1) number of adatoms

∑Ntop

k=n+1 Jk(θk−1 − θk) entering
layers above the nth level, (2) the uncovered area θn−1 − θn

on nth terrace, and (3) the coefficient γn, which describes the
diffusion of mass to the nth layer from layers above it. The
total flux of adatoms entering into the layer n is then given by
J+(n) = (θn−1 − θn)[Jn + γn [∑Ntop

k=n+1 Jk(θk−1 − θk)]]. In
this expression Jn is the contribution from the feeding current
and in the redistribution part γn has the role of transfer rate
for crossing the nth step edge. The decrease of the coverage
of the nth level is similarly given by (1) the product of the
adatom flux Jn(θn−1 − θn) on the nth terrace, (2) the available
uncovered area 1 − θn−1 below it and (3) the rate coefficient
γn−1 describing the diffusion from the nth layer to the layers
below (i.e. the rate for crossing the (n − 1)th step edge),
resulting in J−(n) = γn−1 Jn(θn−1 − θn)(1 − θn−1). The total
rate of change of the coverage is now given by dθn/dt =
J+(n) − J−(n). Finally, by collecting all terms together and
rearranging them, the rate equations read

d

dt
θn = Jn(θn−1 − θn)[1 + γnθn + γn−1θn−1 + �n], (2)

where the effects due to the dependence of adatom feeding
current Jn on the structure morphology are now taken into
account by the term

�n = γn

Jn

Ntop∑

k=n

θk(Jk − Jk+1) − γn−1. (3)

The rates γn need to be normalized so that 0 � γn � 1, in order
to take care so that 0 � γnθn � 1 for all n in equation (2), thus
ensuring mass conservation in the redistribution of adatoms.
Without the term �n the rate equations (2) are similar to the
set of equations given by Fu and Wagner [22, 23]. It should
be noted that the physical origin of this additional term lies in
the structure height dependence of the feeding current. When
Jn → J0 for all n also �n → 0, leading immediately to a
similar set of equations as in [22, 23]. When γn → γ0 = f for
all n with 0 < f < 1, the model is completely similar to the
DCSM model in [22].

2.2. The interlayer mass transfer rate

The definition of interlayer mass transfer rate γn and its relation
to the surface energetics given by equation (1) requires some
closer discussion. In the case of Pb/Cu(111) and Pb/Si(111)
the interlayer mass transfer originates from the microscopic
atomic transitions downwards from the upper to lower terraces
as discussed in [2, 3, 13, 17, 18]. First, we note that in inferring
the parametrization of the Friedel model from the experimental
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Figure 1. Surface energy En as described by the Friedel model
(upper panel) and corresponding rate coefficients γn at different
temperatures (lower panel). The beating behaviour (solid line)
originates from the oscillations in the Friedel model (dotted line)
when energy is calculated for integer values of n. In all cases,
dimensionless energy En → En/A and temperature T → kBT/A
are used.

results, it has been assumed that the equilibrium distribution
of structures with certain heights are related to the Boltzmann
distribution pn ∝ exp[En/kBT ] [5, 6]. Secondly, we assume
that in the nonequilibrium case the transition rates for the
atomistic step crossings gn fulfil the condition of detailed
balance pn+1gn = pngn−1. Therefore, we can choose gn

to follow the Arrhenius-type relation gn = exp[−En/kBT ]
in agreement with detailed balance. In defining the mass
transfer coefficient γn ∝ gn to be used in the model given by
equations (2) and (3) one needs to ensure the mass conservation
so that 0 � γn � 1. A definition for mass transfer rate which is
consistent with these assumptions is given by

γn = gn − min[gn]
max[gn] , gn = exp[−En/kBT ]. (4)

The relation of the rate coefficients γn to the Friedel
oscillations for complete layers (n integer) is shown in figure 1.
The beating behaviour of the Friedel oscillations now becomes
reflected also in the mass transfer rate γn , and this arises
simply from the fact that energy barriers are calculated only
for complete layers corresponding to integer values of n. The
alternating stability of the layers comes now through the rate γn

and is therefore a built-in feature of the model. It is essential
to keep in mind that the energetic stability itself is not the
prediction of the model, but the model shows how the energetic
stability affects the morphology. At high and low temperatures
the oscillations become heavily damped and γn → γ0 = 0. In
this limit the DSCM and simultaneous multilayer growth are
recovered (to be compared with case f = 0 in [22]).

2.3. The feeding current

The adatoms feeding the growth of the different layers, i.e. the
feeding current, come from the pre-deposited wetting layer
of adatoms, which covers the surface of the substrate and
has total coverage �, typically 5–12 monolayers [2, 3]. In

order to specify the generic form of the feeding current, we
make an assumption that the current from a given layer to the
next one depends on the current entering into layers below
it. Moreover, the adatoms may either take all step lengths
from 1 to n when entering the layer n, or otherwise single
step jumps with a broad distribution of waiting times between
jumps. These alternatives lead us to consider a random process,
where the crossing of a layer is a rare event, either with a broad
distribution of jump lengths n−(1+β) or waiting times τ−(1+β)

with 0 < β � 2 [24]. The cumulative probability P(n) to enter
the layer n can be approximated in the continuum limit to be
P(n) ∝ ∫

n′−(1+β)dn′ ∝ n−β . Therefore, the feeding current
Jn ∝ P(n) can be assumed to have a form

Jn = J0 n−β , 0 < β � 2. (5)

The factor J0 can adjusted so that the total amount of mass in
the final structures is equal to the pre-deposited amount � of
material by requiring that � = ∑

n Jn . In practice we use �

as a parameter and show the resulting structures as a function
of increasing �. Therefore, results have significance up to the
given pre-deposited amount of material. It should be noted,
however, that in a real situation not all pre-deposited mass
is consumed by the growing structures, but in order to reach
structures with n layers pre-deposition of � > n is required.

It can be noted that the value β → 0 corresponds to the
‘ballistic’ transport with feeding current becoming constant,
while the other limit β = 2 corresponds to the ‘diffusive’ or
ordinary random walk (for details, see e.g. [24]). Of course,
the notions ‘ballistic’ and ‘diffusive’ refer to a random walk
with a large number of repeated jumps or a large number of
layers (see the standard derivations e.g. in [24]), and are not
meant to be taken literally in the present situation but only as a
convenient way to refer to the essential qualitative differences
of the adatom feeding process. In what follows we concentrate
on cases 1/2 � β < 2, because firstly, adatom current
with equal transition probability for all heights (i.e. ballistic)
is implausible and would require very special conditions, and
secondly, by choosing β � 2, results similar to β = 2 are
expected, because then the transport is slow enough so that
additional slowing down does not affect the outcome of growth.
As will be seen, in region 1/2 < β < 1 there is a gradual
change from slightly rounded tower-like structures to nearly
perfect ones, while with β > 1 the exact values of β have no
further consequences on the morphology.

2.4. The nucleation of new layers

The new layers are formed on top of the existing layers if
there is a large enough stable nucleus available to support the
further growth. Thus the formation of this nucleus is crucial
for the growth of the nanotowers; the growth of layers is
prohibited if no stable nuclei are formed. The probability of
forming a stable nucleus depends on the critical size of the
terrace needed for two adatoms to merge. The nucleation
rate ω for this process can be calculated within the ‘lonely
adatom model’ (LAM) [19, 20], where two isolated adatoms
on a terrace meet and form immediately a stable nucleus. The
probability of nucleation depends only on the adatom flux and
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residence time on an island with radius R. The residence time,
on the other hand, is related to the energy barrier needed to
overcome the descending terrace edge. According to the LAM,
the nucleation rate is obtained in form [20]

ωn = π2 J 2
n R5

2γn−1
. (6)

In defining the relation of ωn to the critical radius Rc
n needed

for nucleation of the new layer, we follow the LAM in
requiring that nucleation takes place when the probability
that no nucleation has occurred is equal to 1/2 (see [20]
for derivation), resulting in Rc

n = (7 ln 2/π2)1/5(γn−1/Jn)
1/5.

When the radius of the topmost layer reaches the critical radius
Rc

n a new layer can nucleate on it. In practice this is done
by multiplying the terms responsible for the nucleation of a
new, nth layer in equation (2) with a Heaviside step function
H(θn−1 − θ c

n−1), where θ c
n = π(Rc

n)
2 is the critical coverage

needed for nucleation. Formally, this means replacing term
Jn[θn−1 −θn] with Jn[θn−1 −θn]H(θn−1 −θ c

n−1) in equation (2)
to prevent the premature formation of new layers.

2.5. Measures to monitor morphology

Finally, in order to make the essential features of the growth
visible and examinable, we need suitable measures to monitor
the time evolution of the morphology of nanostructures
or nanostructured layers. Such measures, which are
also experimentally accessible, are most often based on
measurements of the partial surface coverages. However, the
coverages alone are not yet very convenient quantities for
monitoring the growth and stability of layers and the evolution
of the structure morphology. Instead, a better measure for
indicating the evolution of morphology can be based on
the statistical roughness or RMS height fluctuations of the
structures defined as [20]

W =
[ ∞∑

k=0

(k − �)2ϕk

]1/2

, (7)

where � = ∑∞
k=1 θk and ϕk = θk−1 − θk . Because ϕn

can be interpreted as the probability that an arbitrary point
on the structure is on layer n, it can taken as the probability
distribution of the local height [19, 20]. Thus the RMS height
fluctuations from the mean � define the effective roughness of
the structure and directly give information of the morphology
of the structures. For a simple simultaneous multilayer growth
leading to the formation of mounds or tipped mounds [19, 20],
the roughness has a simple power law behaviour W = √

�,
revealing a scaling property of the cluster structures. For the
simultaneous bilayer type growth leading to the formation of
nanotowers, the roughness is expected to be an oscillating
function with deep minima at the locations of the stable towers.

3. Results

The time evolution of the nanostructure morphology is
obtained by solving equation (2) numerically for different

temperatures and parameters β . With different choice
of parameters the model describes different nanostructure
morphologies, which are also clearly indicated by the
behaviour of roughness W . In representing the results, we
have chosen to use the total coverage � as a parameter, but
in practice, the value of � is set by the initial condition of a
pre-deposited number of layers. In all cases, we assume that
all pre-deposited material is available for growth.

An example of the evolution of the nanotower morphology
is shown in figure 2 for T = 1 (corresponding to temperatures
150–250 K for Pb/Si and 300–500 K in Pb/Cu depending on
the exact parametrization) and for β = 1/2 and 1. In this
case, nanotowers with heights 4, 6, 8 and 11, 13 and 15 (and
also 17 although not shown in figure 2) are clearly tower-like
structures. These sizes correspond to the deep crevices in W ,
and when they are obtained, the growth is retarded. It should be
noted that the time in the calculations depends on the parameter
values and its absolute scale cannot be fixed without further
knowledge of the absolute values of Jn and gn. Nevertheless,
relative time differences are meaningful. This allows us to
conclude that in figure 2, where coverages θn are shown as a
function of time, the growth is seen to take place so that two
layers grow nearly simultaneously but between these periods
there is a period of retardation or slowing down of growth.
With increasing β , the retardation period increases. In fact,
when β → 2, the growth practically stops at stable heights,
but morphology remains the same as for β = 1 when the
structures are already nearly perfect towers. By comparing
the cases β = 1/2 and 1 in figure 2, it is seen that the
variations in β do not affect much the morphology of the
towers with stable heights. This situation holds in practice
for all values of β > 1/2, and therefore β controls mainly
the time evolution of the structures without affecting too much
the height selection and morphology. When β � 1/2 the
structures will become more rounded, and eventually in the
limit β → 0 they resemble structures shown in figure 3 at
high and low temperatures. Therefore, certain reduction of the
feeding current with increasing height is needed, but the exact
value of β is not crucial.

The model results are compared in table 1 with
experimental results for Pb/Cu and Pb/Si systems. As is
seen from this comparison, the stability of heights 6 and 8 as
well as 15 and 17 are quite a robust outcome both in model
calculations and in experiments. It is of interest to note that
in our model, the height 4 appears but it is not observed in
experiments [2–6, 8–11]. Moreover, the height 10 seen in some
experiments is missing in our model, which is probably due to
the fact that this height occurs near the beating regions of the
surface energy (see figure 1). Also, heights 12 and 14 reported
in some Pb/Si systems seem to depend very delicately on the
energetics. In general, very small changes in the energetics
may change considerably the behaviour near beating regions,
which explains the ambiguity of the results for the stability of
heights 4, 10, 12 and 14.

The effect of ambient temperature on growth is expected
to be significant in determining the stable heights. This
is demonstrated in figure 3 where three temperatures T =
1/10, 1/2 and 10 are compared with case T = 1 in figure 2.
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Figure 2. Nanotower growth and the evolution of partial coverages of different layers θn and the roughness W 2 for T = 1 and β = 1
(solid line) and for β = 1/2 (dotted line). Nanotower morphologies at positions of roughness minima as indicated are shown in the panel on
the right. Also the total coverage and the number of completed layers are given.

Figure 3. Temperature effect on nanotower growth as monitored through the roughness W 2. Parameters are T = 1/10, 1/2 and 10 and β = 1
(solid line) and 1/2 (dotted line). Note the similarity of results for low (T = 1/10) and high (T = 10) temperatures, and the resulting
mound-like morphology.

Table 1. Model results for stable heights of nanotowers compared with experimental results. Note that in some references the counting of
layers/steps is done differently (compare e.g [2, 7] to [8, 4–6]). In the table counting based on complete layers is used.

Ref. Stable heights System Temp. (K)

Model 4 6 8 — 11 — 13 — 15 17 Pb/Cu(Si) 90(180)–350(700)
[8] — 6 8 — 11 — — — 15 17 Pb/Cu 300–400
[7] — 6 8 10 — 12 — 14 15 17 Pb/Si 150–250
[4, 5] — 6 8 10 — 12 13 — 15 17 Pb/Si 150–280

5
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The corresponding rates γn based on the Friedel model are
shown in figure 1. From the results in figure 3 it can be seen
that at low temperatures only heights 6 and 8 are nanotower-
like and for larger structures the morphology rapidly turns
to mounds or rounded huts, reminiscent of ‘wedding-cake’
structures [19, 20] and Poissonian growth with W ∝ √

�.
In these limiting regions the layer dependent oscillations in
the interlayer mass transfer coefficient γn become vanishingly
small and γn → 0. In this region simultaneous multilayer
growth as described by DCSM is retained.

In summary, the results show that at intermediate
temperatures 1/2 < T < 2 there is a temperature window,
where even heights are stable up to height 8, and after that
the odd heights from 11 onwards become more stable than the
even heights. The temperature window where stable structures
are obtained corresponds to real temperatures of about 90 K <

T < 350 K for Pb/Si (A = 150 meV) and about 180 K < T <

700 K for Pb/Cu (A = 300 meV). This temperature window is
in reasonably good agreement with experimental observations,
where stable structures in Pb/Si systems have been reported in
the temperature windows 150–280 K [2–6] and 250–400 K in
Pb/Cu [8–11].

4. Conclusions

It is shown here that a simple phenomenological model, which
describes the time evolution of wedding-cake type structures,
reproduces the typical morphologies of Pb nanotowers as they
are observed in heteroepitaxy on Si(111) and Cu(111) surfaces.
The results show that the morphological evolution of such
structures is simply related to the macroscopic mass currents
that originate from the feeding of adatoms from the wetting
layer and the adatom redistribution due to interlayer transitions
governed by Friedel-type oscillating energetics. These simple
conditions appear to be enough to describe the growth of
nanotowers. Notable is the clear simultaneous bilayer growth,
as indicated by the grouping of coverages in groups of
two and the accompanying double peaked oscillations of
roughness. This feature of bilayer growth is also observed
in experiments [2, 3, 8, 9]. Moreover, the temperature
dependence of nanotower morphologies and the temperature
window, where such structures are obtained, are correctly
described by the phenomenological model presented here.

These notions about the basic phenomenology of growth
and the basic processes behind it are in qualitative agreement
with experimental observations of the growth of nanotowers
on Pb/Cu(111) and Pb/Si(111). Therefore, the present

model suggests that such morphologies are rather robust
outcomes of growth and are expected whenever the basic
phenomenological conditions of oscillating energetics, feeding
current diminishing with increasing structure height and the
conditions of critical size for nucleation of new layers are
fulfilled.
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